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Goal of this series of talks.

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics

2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity, isomorphism
classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff groups.

5 This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimer. — The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT[23] On the rôle of local analysis in the computation
of polylogarithms and harmonic sums.

1 In the preceding weeks, we have considered the MRS factorization which is
one of our precious jewels.

DX :=
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl) (1)

2 This identity, formulated with a basis of Lie polynomials and its dual holds
true, not only for other bases but also with other Lie algebras (precisely
those that are free as k-modules).

3 At first, one must pass from a basis of the Lie algebra in question g (if it
exists) to a basis of its universal enveloping algebra U(g). Then, one exploits
the factorials due to the comultiplication is order to get the infinite product.

4 Today we will see how to extend the indexation of Polylogarithmic functions
and Harmonic sums.
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Introduction.

The aim of this talk is to explain how to extend polylogarithms

Li(s1, . . . sr ) =
∑

n1>n2>...nr>0

zn1

ns1
1 . . . nsrr

for |z | < 1 (2)

They were a priori coded by lists (s1, . . . sr ) but, when si ∈ N+, they admit an
iterated integral representation and are better coded by words with letters in
X = {x0, x1}. We will use the one-to-one correspondences.

(s1, . . . , sr ) ∈ Nr
+ ↔ x s1−1

0 x1 . . . x
sr−1
0 x1 ∈ X ∗x1 ↔ ys1 . . . ysr ∈ Y ∗ (3)

Li(s)[z ] is Jonquière and, for <(s) > 1, one has Li(s)[1] = ζ(s)

Completed by Li(xn0 ) = logn(z)
n! this provides a family of

C-independant functions (linearly) admitting an analytic continuation

on the cleft plane C \ (]−∞, 0] ∪ [1,+∞[) or ˜C \ {0, 1}.
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Introduction: Review of the facts.

ζ(s) =
∑

n≥1
1
ns (<(s) > 1)

when one multiplies two of these, one gets quantities like

ζ(s1)ζ(s2) =
∑

n1,n2≥1

1

ns1
1 n

s2
2

= ζ(s1, s2) + ζ(s1 + s2) + ζ(s2, s1)

and, with several of them, we are led to the following definition of
MultiZeta Values (MZV), converging in

Hr = {(s1, . . . , sr ) ∈ Cr | ∀m = 1, . . . , r ,<(s1) + . . .+ <(sm) > m} .

ζ(s1, . . . , sk) :=
∑

n1>...>nk≥1

1

ns1
1 . . . n

sk
k

(4)

On the other hand, one has the classical polylogarithms defined, for
k ≥ 1, |z | < 1, by

− log(1− z) = Li1 =
∑
n≥1

zn

n1
; Li2 =

∑
n≥1

zn

n2
; . . . ; Lik(z) :=

∑
n≥1

zn

nk
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Introduction: Review of the facts/2

The analogue of the classical polylogarithms for MZV reads

Liys1 ...ysk (z) :=
∑

n1>...>nk≥1

zn1

ns1
1 . . . n

sk
k

; |z | < 1

They satisfy the recursion (ladder stepdown)

z
d

dz
Liys1 ...ysk = Liys1−1...ysk

if s1 > 1

(1− z)
d

dz
Liy1ys2 ...ysk

= Liys2 ...ysk if k > 1 (5)

which, with si ∈ N≥1, k ≥ 1, ends at the “seed”

Liy1 (z) = Li1(z) = log(
1

1− z
) (6)

For the next step, we code the moves z d
dz (resp. (1− z) d

dz ) - or more

precisely sections
∫ z

0
f (s)
s ds (resp.

∫ z

0
f (s)
1−s ds) - with x0 (resp. x1).
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Tree of outputs (so far).

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

, ∗0 = 0

〈S | xn1 〉 =
(−log(1− z))n

n!
; 〈S | x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S | x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S | x1x0x1〉 = Lix1x0x1

(z) = Li[1,2](z) =
∑

n1>n2≥1

zn1

n1n
2
2

〈S | x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; above “cl. not.” stands for “classical notation”
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Introduction: Review of the facts/3

Calling S the prospective generating series

S =
∑
w∈X∗

〈S | w〉︸ ︷︷ ︸
∈H(Ω)

w ; X = {x0, x1} (7)

V. Drinfel’d [1] indirectly proposed a way to complete the tree:{
d(S) = ( x0

z + x1

1−z ).S (NCDE )

lim z→0
z∈Ω

S(z)e−x0log(z) = 1H(Ω)〈〈X〉〉 (Asympt. Init. Cond .)
(8)

from the general theory, this system has a unique solution which is precisely
Li (called G0 in [1]) ; S 7→ d(S) being the term by term derivation of the
coefficients.

Minh [2] indicated a way to effectively compute this solution through
(improper) iterated integrals (see also [13]).
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Explicit construction of Drinfeld’s G0.

Given a word w , we note |w |x1 the number of occurrences of x1 within w

αz
0(w) =


1Ω if w = 1X∗∫ z

0 α
s
0(u) ds

1−s if w = x1u∫ z
1 α

s
0(u)dss if w = x0u and |u|x1 = 0 (w ∈ x∗0 )∫ z

0 α
s
0(u)dss if w = x0u and |u|x1 > 0 (w ∈ x0X

∗x1x
∗
0 )

The third line of this recursion implies

αz
0(xn0 ) =

log(z)n

n!

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =

∑
w∈X∗ α

z
0(w)w is Li (G0 in [1]).
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Complete tree of outputs.

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

As an example, we compute some coefficients

〈Li | xn0 〉 =
log(z)n

n!
; 〈Li | xn1 〉 =

(−log(1− z))n

n!

〈Li | x0x1〉 = Li2(z) =
∑
n≥1

zn

n2
; 〈Li | x1x0〉 = 〈Li | x1tt x0 − x0x1〉(z)

〈Li | x2
0 x1〉 = Li3(z) =

∑
n≥1

zn

n3
; 〈Li | x1x0〉 = (−log(1− z))log(z)− Li2(z)

〈Li | x r−1
0 x1〉 = Lir (z) =

∑
n≥1

zn

nr
; 〈Li | x2

1 x0〉 = 〈Li |
1

2
(x1tt x1tt x0)− (x1tt x0x1) + x0x

2
1 〉
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Li From a NCDE.

The generating series S =
∑

w∈X∗ Li(w) satisfies (and is unique to do so)
d(S) = ( x0

z + x1
1−z ).S

lim z→0
z∈Ω

S(z)e−x0log(z) = 1H(Ω)〈〈X 〉〉

(9)

with X = {x0, x1}. This is, up to the sign of x1, the solution G0 of
Drinfel’d [13] for KZ3a. We define this unique solution as Li. All Liw are
C- and even C(z)-linearly independant (see CAP 17 Linear independance
without monodromy [23]).

aIn fact, the path from KZ3 to these equations is done through a
counter-homogenization (see Vu’s forthcoming talks).
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Domain of Li (global, definition)

In order to extend indexation of Li to series, we define Dom(Li ; Ω) (or
Dom(Li)) if the context is clear) as the set of series S =

∑
n≥0 Sn

(decomposition by homogeneous components) such that
∑

n≥0 LiSn(z)
converges unconditionally for compact convergence in Ω. One sets

LiS(z) :=
∑
n≥0

LiSn(z) (10)

Starting the ladder

(C〈X 〉, tt , 1X∗) C{Liw}w∈X∗

(C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

Li•

Li
(1)
•

Examples

Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1, Liαx∗0 +βx∗1
(z) = zα(1− z)−β
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Main difference between αz
z0

and αz
0.

5 Here, we still work with
Ω = Cr (]−∞, 0] ∪ [1,+∞[) and u0 = 1/z , u1 = 1/(1− z)

6 αz
z0
, αz

0 : X ∗ H(Ω) are both shuffle characters (see below) but
they satisfy different growth conditions.

7 With αz
z0

, (z0 ∈ Ω). — Let us denote K(Ω) the set of compact
subsets of Ω. One can show that, for all K ∈ K(Ω), there exists
MK > 0 s.t.

(∀w ∈ X+)( ||〈αz
z0
| w〉||K ≤ MK

1

(|w | − 1)!
) (11)

8 This entails that, given a rational series T =
∑

n≥0 Tn (where
Tn =

∑
|w |=n〈T | w〉), the series, for all K ∈ K(Ω)∑

n≥0

||〈αz
z0
| Tn〉||K < +∞

9 We will say that T ∈ Dom(αz
z0

) and set αz
z0

(T ) =
∑

n≥0〈αz
z0
| Tn〉.
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Main difference between αz
z0

and αz
0/2

10 In fact, αz
0 satisfies no condition of the type (11) because, with x∗0x1

(Jonquière branch), we can see that
1 for n ≥ 1, (x∗0 x1)n = xn−1

0 x1, then

〈Li(z) | xn−1
0 x1〉 = 〈αz

z0
| xn−1

0 x1〉 = Jn(z) =
∑
k≥1

zk

kn
(12)

2 The series
∑

n≥0 Jn does not converge (even pointwise) on ]0, 1[
because,

x ∈]0, 1[=⇒ Jn(x) ≥ x

3 So, what can be salvaged ? → in fact, conditions (growth or other)
implying absolute convergence at the level of words is hopeless because
of restriction and we would like to preserve

Li(x∗0 ) = z ; Li(x∗1 ) = 1/(1− z) ; Li(S tt T ) = Li(S).Li(T ) (13)

and then Li
(
(x0 + x1)∗

)
= z/(1− z)
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Main difference between αz
z0

and αz
0/3

11 Then, we must have a criterium (for admitting a series in Dom(Li))

12 Fortunately H(Ω) shares with finite dimensional spaces the following
property

Unconditional convergence⇐⇒ Absolute convergence (14)

13 Unconditional convergence for a series
∑

n≥0 un means
convergence “independent of the order” i.e. that

∑
n≥0 uσ(n)

converges whatever σ ∈ SN.

14 Absolute convergence is wrt the continuous seminorms of the space.

15 Time is ripe now to speak of the standard topology of H(Ω).

16 For K ∈ K(Ω), we introduce the seminorm (norm if Ω is connected
and K ◦ 6= ∅)

||f ||K = sup
z∈K
|f (z)|
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Initial topologies.

17 We now use a very very general construction, well suited both for
series and holomorphic functions (and many other situations), that of
initial topologies (see [33] and, for a detailed construction [6], Ch1
§2.3)

C (Ki ;C)

X H(Ω) C (Kj ;C)

C (Kr ;C)

g

resKi ◦g

resKj

resKr

resKi

18 So H(Ω) is a locally convex TVS whose topology is defined by the
family of seminorms (|| ||K )K∈K(Ω).
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Topology of H(Ω) cont’d.

17 In fact, every Ω ⊂ C is σ-compact, this means that one can construct
a sequence (Kn)n≥1 of compacts i.e. (∀K ∈ K(Ω))(∃n ≥ 1)(K ⊂ Kn)
therefore H(Ω) is a complete (hence closed) subset of the product
Πn≥1 C(Kn;C) (for the topology on the cube, see a next CCRT).

Kn = {z ∈ Ω | d(z , z0) ≤ n and d(z ,Cr Ω) ≥ 1

n
}.

z0

18 We will see more (step-by-step and starting from scratch) on the
topology of the cube and separability in the CCRT devoted to
convergence questions).
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Properties of H(Ω) and domain of Li.

17 If Ω 6= ∅, H(Ω) is not normable because, there are two continuous
operators

a† : f 7→ z .f ; a : f 7→ d

dz
f

such that [a, a†] = IdH(Ω) (Hint Compute ada(eta
†
)).

18 H(Ω) has property (14) (nuclearity).

19 This leads us to the following

Definition

Let T ∈ H(Ω)〈〈X 〉〉, we define (with [S ]n :=
∑
|w |=n〈S | w〉w)

Dom(T ) = {S ∈ C〈〈X 〉〉 |
∑
n≥0

〈T | [S ]n〉 cv inconditionally} (15)

If S ∈ Dom(T ), we set 〈T | S〉 :=
∑

n≥0〈T | [S ]n〉.
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Shuffle properties and domain of Li.

17 In the case when T is a shuffle character, we have

Theorem (GD, Quoc Huan Ngô, HNM [14] for Li)

Let T ∈ H(Ω)〈〈X 〉〉 such that

〈T | : P 7→ 〈T | P〉 (C〈X 〉 → H(Ω)) (16)

is a shuffle character. then
i) Dom(T ) is a shuffle subalgebra of (C〈〈X 〉〉, tt , 1X∗).
ii) 〈T | S1 tt S2〉 = 〈T | S1〉〈T | S2〉 i.e. S 7→ 〈T | S〉 is a shuffle character
of (Dom(T ), tt , 1X∗) that we will still denote 〈T | .
iii) Then Im(〈T | ) is a (unital) subalgebra of H(Ω).
iv) In particular (see infra for an algebraic proof), z = Li(x∗0 ) and then,
C[z ] ⊂ Im(Dom(Li)).
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Open problems and some solved.

18 Do we have H(Ω) = Im(Dom(Li)) (= Im(Li)) ? (in other words does
it exist inaccessible f ∈ H(Ω) ?)

19 If z0 /∈ Ω, does 1/(z − z0) belong to Im(Li) ? (z0 ∈ Ω and z0 /∈ Ω)

20 (Solved) Are there non-rational series in Dom(Li) ? (answer yes)

21 (Solved) Is Crat〈〈X 〉〉 contained in Dom(Li) (answer no)

22 What is the topological complexity of Dom(Li) in the Borel
hierarchy (Addison notations, see [24] for details and use the
convenient framework of polish spaces [7], ch IX).

23 Borel hierarchy: We recall that this hierarchy is indexed by ordinals
and defined as follows

1 A set is in Σ0
1 if and only if it is open.

2 A set is in Π0
α if and only if its complement is in Σ0

α.
3 A set A is in Σ0

α for α > 1 if and only if there is a sequence of sets
A1,A2, . . . such that each Ai is in Π0

αi
for some αi < α and A =

⋃
Ai .

4 A set is in ∆0
α if and only if it is both in Σ0

α and in Π0
α.

22 / 48



23/48

Open problems and some solved/2

24 From slide (11), one can remark that the iterated integrals are based on two
integrators, informally defined as

ι1(f ) :=

∫ z

0

f (s)
ds

1− s
; ι0(f ) :=

∫ z

z0

f (s)
ds

s
with z0 ∈ {0, 1} (17)

ι1 is defined and continous on H(Ω) and ι0 is defined on spanC{Liw}w∈X∗a
(context-dependent) and not continuous [14] on this set (see below).
Problem What is the Baire class of ι0 ?

25 Recall that K(Ω) admits a cofinal sequence (Kn)n∈N of compacts i.e.
(∀K ∈ K(Ω))(∃n ∈ N)(K ⊂ Kn) therefore H(Ω) is a complete (hence
closed) subset of the product Πn∈NC(Kn;C) .

26 Recall that (see [14] and slide Sl.18)

Kn = {z ∈ Ω | d(z , z0) ≤ n and d(z ,Cr Ω) ≥ 1

n
}.

aIt can be a little bit extended, see our paper [14].
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Properties of the extended Li.

Proposition

With this definition, we have

1 Dom(Li) is a shuffle subalgebra of C〈〈X 〉〉 and so is
Domrat(Li) := Dom(Li) ∩ Crat〈〈X 〉〉

2 For S ,T ∈ Dom(Li), we have
LiSttT = LiS .LiT

Examples and counterexamples

For |t| < 1, one has (tx0)∗x1 ∈ Dom(Li ,D) (D being the open unit slit
disc and Dom(Li ,D) defined similarly), whereas x∗0x1 /∈ Dom(Li ,D).
Indeed, we have to examine the convergence of

∑
n≥0 Lixn0 x1(z), but, for

z ∈]0, 1[, one has 0 < z < Lixn0 x1(z) ∈ R and therefore, for these values∑
n≥0 Lixn0 x1(z) = +∞. Contrariwise one can show that, for |t| < 1,

Li(tx0)∗x1
(z) =

∑
n≥1

zn

n−t
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Passing to harmonic sums Hw , w ∈ Y ∗.

Polylogarithms having a removable singularity at zero

The following proposition helps us characterize their indices.

Proposition

Let f (z) = 〈Li | P〉 =
∑

w∈X∗〈P | w〉Liw . The following conditions are
equivalent

i) f can be analytically extended around zero

ii) P ∈ C〈X 〉x1 ⊕ C.1X∗

We recall the expansion (for w ∈ X ∗x1 t {1X∗}, |z | < 1)

Liw (z)

1− z
=
∑
N≥0

HπY (w)(N) zN (18)

25 / 48



26/48

Global and local domains.

This proposition and the lemma lead us to the following definitions.

1 Global domains.–
Let ∅ 6= Ω ⊂ B̃ (with B = Cr {0, 1}), we define DomΩ(Li) ⊂ C〈〈X 〉〉 to be
the set of series S =

∑
n≥0 Sn (with Sn =

∑
|w |=n〈S | w〉w each

homogeneous component) such that
∑

n∈N LiSn is unconditionally
convergent for the compact convergence (UCC) [26].
As examples, we have Ω1, the doubly cleft plane then
Dom(Li) := DomΩ1 (Li) or Ω2 = B̃

2 Local domains around zero (fit with H-theory).–
Here, we consider series S ∈ (C〈〈X 〉〉x1 ⊕ C 1X∗) (i.e. supp(S) ∩ Xx0 = ∅).
We consider radii 0 < R ≤ 1, the corresponding open discs
DR = {z ∈ C| |z | < R} and define

DomR(Li) := {S = Σn≥0 Sn ∈ (C〈〈X 〉〉x1 ⊕ C1Ω)|
∑
n∈N

LiSn (UCC) in DR}

Domloc(Li) := ∪0<R≤1DomR(Li).
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Local domains.

27 Local domains: the domain of convergence of Liw , w ∈ X ∗x1 is
Cr (]−∞,−1] ∪ [1,+∞[) and these functions are Taylor expandable
around zero. With S =

∑
n≥0 Sn ∈ C〈〈X 〉〉, we study the inconditional

convergence of
∑

n≥0 LiSn(z) within different open disks
(B(0,0)(r)) 0<r<1

x

y

A B

(0, r)
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Properties of the domains.

Theorem A

1 For all ∅ 6= Ω ⊂ B̃, DomΩ(Li) is a shuffle subalgebra of C〈〈X 〉〉 and so
are the DomR(Li).

2 R 7→ DomR(Li) is strictly decreasing for R ∈]0, 1].

3 All DomR(Li) and Domloc(Li) are shuffle subalgebras of C〈〈X 〉〉 and
πY (Domloc(Li)) is a stuffle subalgebra of C〈〈Y 〉〉.

4 Conversely, let T (z) =
∑

N≥0 aNz
N be a Taylor series i.e. such that

lim supN→+∞ |aN |1/N = B < +∞, then the series

S =
∑
N≥0

aN(−(−x1)+)tt N (19)

is summable in C〈〈X 〉〉 (with sum in C〈〈x1〉〉) and S ∈ DomR(Li) with
R = 1

B+1 and LiS = T (z).
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Theorem A/2

5 Let S ∈ DomR(Li) and S =
∑

n≥0 Sn (homogeneous decomposition),
we definea N 7→ HπY (S)(N) by

LiS(z)

1− z
=
∑
N≥0

HπY (S)(N)zN . (20)

Moreover, for all r ∈]0,R[, we have∑
n,N≥0

|HπY (Sn)r
N | < +∞, (21)

in particular, for all N ∈ N the series (of complex numbers)∑
n≥0 HπY (Sn)(N) converges absolutely to HπY (S)(N).

aThis definition is compatible with the old one when S is a polynomial.
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Theorem A/3

6 Conversely, let Q ∈ C〈〈Y 〉〉 with Q =
∑

n≥0 Qn (decomposition by
weights), we suppose that it exists r ∈]0, 1] such that∑

n,N≥0

|HQn(N)rN | < +∞ (22)

in particular, for all N ∈ N,
∑

n≥0 HQn(N) = `(N) ∈ C
unconditionally.
Under such circumstances, πX (Q) ∈ Domr (Li) and, for all |z | < r

LiS(z)

1− z
=
∑
N≥0

`(N)zN , (23)
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Insightful fathers.

Figure: Jacques Hadamard and Paul Montel.
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Local domains: morphism properties.

Corollary (of Theorem A)

Let S ,T ∈ Domloc(Li), then

S tt T ∈ Domloc(Li), πX (πY (S) πY (T )) ∈ Domloc(Li)

and for all N ≥ 0,

LiS tt T = LiS LiT ; Li1X∗ = 1H(Ω), (24)

HπY (S) πY (T )(N) = HπY (S)(N)HπY (T )(N). (25)

LiS(z)

1− z
� LiT (z)

1− z
=

LiπX (πY (S) πY (T ))(z)

1− z
. (26)
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Continuing the ladder

(C〈X 〉, tt , 1X∗) C{Liw}w∈X∗

(C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

C〈X 〉 tt Crat〈〈x0〉〉 tt Crat〈〈x1〉〉 CC{Liw}w∈X∗

C〈X 〉 ⊗C Crat〈〈x0〉〉 ⊗C Crat〈〈x1〉〉

Li•

Li
(1)
•

Li
(2)
•

We have, after a theorem by Leopold Kronecker,

Crat〈〈x〉〉 =
{P

Q

}
P,Q∈C[x]
Q(0)6=0

(27)
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On the right: freeness without monodromy.

Theorem (Deneufchâtel, GHED,Minh & Solomon, 2011 [12])

Let (A, ∂) be a k-commutative associative differential algebra with unit and C be
a differential subfield of A (i.e. ∂(C) ⊂ C). We suppose that k = ker(∂) and that
S ∈ A〈〈X 〉〉 is a solution of the differential equation

d(S) = MS ; 〈S | 1〉 = 1 with M =
∑
x∈X

uxx ∈ C〈〈X 〉〉 (28)

(i.e. M is a homogeneous series of degree 1)
The following conditions are equivalent :

1 The family (〈S | w〉)w∈X∗ of coefficients of S is (linearly) free over C.

2 The family of coefficients (〈S | x〉)x∈X∪{1X∗} is (linearly) free over C.

3 The family (ux)x∈X is such that, for f ∈ C et αx ∈ k

∂(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0).
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A useful property.
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Left and then right: the arrow Li(1)
• .

Proposition

i. The family {x∗0 , x∗1} is algebraically independent over (C〈X 〉, tt , 1X∗)
within (C〈〈X 〉〉rat, tt , 1X∗).

ii. (C〈X 〉, tt , 1X∗)[x∗0 , x
∗
1 , (−x0)∗] is a free module over C〈X 〉, the family

{(x∗0 )tt k tt(x∗1 )tt l}(k,l)∈Z×N is a C〈X 〉-basis of it.

iii. As a consequence, {w tt(x∗0 )tt k tt(x∗1 )tt l} w∈X∗
(k,l)∈Z×N

is a C-basis of it.

iv. Li
(1)
• is the unique morphism from (C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] to
H(Ω) such that

x∗0 → z , (−x0)∗ → z−1 and x∗1 → (1− z)−1

v. Im(Li
(1)
• ) = CZ{Liw}w∈X∗ .

vi. ker(Li
(1)
• ) is the (shuffle) ideal generated by x∗0 tt x

∗
1 − x∗1 + 1X∗ .
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Sketch of the proof (pictorial).

(w, k, l)

©

l
·

·

(w,−k, l)

k
−k

/

.

(w, k − 1, l)

(w, k − 1, l − 1)

.

O

(w,−k + 1, l)

(w,−k, l − 1)

Figure: Rewriting mod J of {w tt(x∗0 )tt k tt(x∗1 )tt l}k∈Z,l∈N,w∈X∗ .
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Concluding remarks.

1 Extending the domain of polylogarithms to (some) rational series
permits the projection of rational identities. Such as

(αx)∗tt(βy)∗ = (αx + βy)∗

2 The theory developed here allows to pursue, for the Harmonic sums,
this investigation such as

(αyi )
∗ (βyj)

∗ = (αyi + βyj + αβyi+j)
∗

3 We have, on the left, spaces equipped with Krull ultrametric
convergence and a nice setting on the (topological) Magnus and
Hausdorff groups. On the right, we have adapted domain theories
with identities between polylogarithms and harmonic sums.
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