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Goal of this series of talks.

The goal of these talks is threefold )

@ Category theory aimed at “free formulas” and their combinatorics

@ How to construct free objects

@ w.r.t. a functor with - at least - two combinatorial applications:
@ the two routes to reach the free algebra
@ alphabets interpolating between commutative and non commutative
worlds
@ without functor: sums, tensor and free products
© w.r.t. a diagram: limits

© Representation theory: Categories of modules, semi-simplicity, isomorphism
classes i.e. the framework of Kronecker coefficients.

© MRS factorisation: A local system of coordinates for Hausdorff groups.

© This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimer. — The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

3/48



CCRTI23] On the réle of local analysis in the computation
of polylogarithms and harmonic sums.

© In the preceding weeks, we have considered the MRS factorization which is
one of our precious jewels.

N\
Dxi:ZW®W: ZSW®PW: H exp(S; ® Py) (1)
weX* weX* leLynX

@ This identity, formulated with a basis of Lie polynomials and its dual holds
true, not only for other bases but also with other Lie algebras (precisely
those that are free as k-modules).

© At first, one must pass from a basis of the Lie algebra in question g (if it
exists) to a basis of its universal enveloping algebra U/(g). Then, one exploits
the factorials due to the comultiplication is order to get the infinite product.

© Today we will see how to extend the indexation of Polylogarithmic functions
and Harmonic sums.
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Introduction.

The aim of this talk is to explain how to extend polylogarithms
. zM
Li(sy,...s) = > ——— for |z <1 (2)
m>m>..n,>0 1 T

They were a priori coded by lists (s1,...s,) but, when s; € N, they admit an
iterated integral representation and are better coded by words with letters in
X = {xo,x1}. We will use the one-to-one correspondences.

s1—1

(s1,...,5) €N < x5 X1...X5’_1X1 EX*X1 ¢ Ve ... Y5, €Y (3)

e Li(s)[z] is Jonquiere and, for R(s) > 1, one has Li(s)[1] = ¢(s)
o Completed by Li(x{) = % this provides a family of

C-independant functions (linearly) admitting an analytic continuation
on the cleft plane C\ (] — 00, 0] U [1,+oc[) or C\ {0, 1}.

6/48



Introduction: Review of the facts.

© ((s) =Y nz1 s (R(s)>1)

@ when one multiplies two of these, one gets quantities like

()= Y g = 51,9 + (51 92+ C(52.51)

n
n,m>1 12

@ and, with several of them, we are led to the following definition of
MultiZeta Values (MZV), converging in
Hr=A{(s1,...,8) €C"|Vm=1,....r,R(s1) + ...+ R(sm) > m} .

QETTITY N o - (4)

Sk
nt...n
m>...>mn>1 1 k

@ On the other hand, one has the classical polylogarithms defined, for
k>1,|z| <1, by

_Iog(l—z):Lh:Zi—:; Lizzzz—;; ... Lig(2) ::ZZ

nk
n>1 n>1 n>1

n
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Introduction: Review of the facts/2

@ The analogue of the classical polylogarithms for MZV reads

m

5 V4
s )= D = |2l <1
k

n>...>n>1 1

@ They satisfy the recursion (ladder stepdown)

z Liyy ..y, ifs1>1

E Li)’sl o Ysy
d . . .
(1- Z)EL’nysQ»--ysk = Liy, .y, ifk>1 (5)
which, with s; € N>q, k > 1, ends at the “seed”

Liy (2) = Lia(e) = log(r——) (6)

@ For the next step, we code the moves z< (resp. (1 —z)<Z) - or more

precisely sections fo fs) ds (resp. fz f(s) Zds) - with xo (resp. x1).
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Tree of outputs (so far).

3 2 2
Xy X0Xq X1X0X1  xgXx1

N/ N/

XpX1

Some coefficients with X = {xp, x1 }; up(z) = %: u1(2) = 7

(—log(1 — 2))"

(s 1) = (5 | x0x) = Lia(2) = Liyg (2) = > =
- - — Liyox (2) =
! n! ~~— o s
cl.not. P
n ny
2 . . z . . z
(51 xgx) = Lis(2) =Lip (2) = > —= i (S xx0x) = Lixgxgx (2) = Lip 2(2) = > —
cl.not. 0 n>1 " ny>np>1 nin;
m
2 . . z
(S | xoxq) = LIXOX%(Z) = Lip 1)(2) = T
np>np>1 M2
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Introduction: Review of the facts/3

@ Calling S the prospective generating series

S=Z<S|W>W;X={X0,X1} (7)
wEX™ ()
V. Drinfel'd [1] indirectly proposed a way to complete the tree:
d(s) =(2+%).5 (NCDE)
{ Iim:g S(z)eolos(z) = Ly@yxy (Asympt. Init. Cond.) (8)

from the general theory, this system has a unique solution which is precisely
Li (called Gp in [1]) ; S — d(S) being the term by term derivation of the
coefficients.

@ Minh [2] indicated a way to effectively compute this solution through
(improper) iterated integrals (see also [13]).
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Explicit construction of Drinfeld's Gp.

Given a word w, we note |w|y, the number of occurrences of x; within w

d

Joaf(u)®= if w=xu

Z = 1-s
%) Jfag(u)Z if w=xouand |uly, =0 (w € x3)
Joag(u)Z if  w=xouand |uly, >0 (w € xX*x1x})

The third line of this recursion implies

2( n) _ /Og(z)n

Q| X
0\~*0 nl

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =" . af(w)w is Li (Go in [1]).
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Complete tree of outputs.

X7 X0X12 X1X0X1 ngl x12xo XpX1X0 xlxg xg
A N/ N/ N/
b XoX1 X1X0 x3
X1 X0

As an example, we compute some coefficients

log(z)" —log(1 — z))"
(L] = g,fu) (L) = ( g(nl )
(Li | %) =Lig(x) = 3° 5 & (Li | xaxo) = (Li | xiivo — %0x)(2)
n>1
(Li | x3x) = Lig(z) = > '% i (Li | xixo) = (—log(1 — z))log(z) — Lia(2)
n>1
z" 1
(Li | x ') = Li(2) = 3 — i (L] xix0) = (Li | = (x1ixsx0) — (xiiuXox1) + xox3)
n>1" 2
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Li From a NCDE.

The generating series S = ) . Li(w) satisfies (and is unique to do so)

dS)=(2+).5

z

(9)
ima.e —xplog(z) —
||mz€£ S(Z)e IH(Q)(<X))
with X = {xp, x1}. This is, up to the sign of xq, the solution Gy of
Drinfel'd [13] for KZ32. We define this unique solution as Li. All Li, are
C- and even C(z)-linearly independant (see CAP 17 Linear independance
without monodromy [23]).

?In fact, the path from KZ3 to these equations is done through a
counter-homogenization (see Vu's forthcoming talks).

13/48



Domain of Li (global, definition)

In order to extend indexation of Li to series, we define Dom(Li;2) (or
Dom(Li)) if the context is clear) as the set of series S =) S,
(decomposition by homogeneous components) such that > - Lis,(z)
converges unconditionally for compact convergence in Q. One sets

Lls Z L/S,, (]_O)

n>0

Starting the ladder

=
.
N

(C{X), s, 1x) ——"— C{Lin}wex-

| |

(XD, w0, L) (=30)"> x¢] —2% Ca{Lin Jwexc

|

Examples

LIX(;‘(Z) =2z, LIXT(Z) = (]_ — Z)_]-’ Liax6«+ﬁxl* (z) — Za(]_ _ Z)_ﬁ
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Main difference between aZ and af.

@ Here, we still work with
Q=C\(] —00,0]U[1,4+00]) and up =1/z, vy =1/(1 — 2)

Q o, af: X* — H(Q2) are both shuffle characters (see below) but

zp?

they satisfy different growth conditions.

@ With o, (20 € ). — Let us denote £(f2) the set of compact
subsets of Q. One can show that, for all K € R(Q2), there exists
My > 0 s.t. 1

(Yw e XT)( || {aZ, | w)llk < MKW )

O This entails that, given a rational series T = »_ -, T, (where
Tn =3 w=n(T | w)), the series, for all K € &(%2)
Dl e, | Ta)llk < +o0

n>0

© We will say that T € Dom(aZ)) and set o (T) = >, solaZ | Ta

(11)

).
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Main difference between aZ and of/2

@ In fact, of satisfies no condition of the type (11) because, with xjx;
(Jonquiere branch), we can see that

@ forn>1, (xix1)n = xé’_lxl, then
(Li(2) [ x7xa) = (0Z, | ) = n(2) = > 7= (12)

@ The series ) ., J, does not converge (even pointwise) on ]0, 1|
because, B
x €]0,1[= Jn(x) > x

@ So, what can be salvaged ? — in fact, conditions (growth or other)
implying absolute convergence at the level of words is hopeless because
of restriction and we would like to preserve

Li(xg) =z ; Li(xy)=1/(1—2z); Li(Sw T) =Li(S).Li(T) (13)

and then Li ((xo + x1)*) = z/(1 — 2)
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Main difference between aZ and of/3

® 6 6

Then, we must have a criterium (for admitting a series in Dom(Li))

Fortunately #(2) shares with finite dimensional spaces the following
property

Unconditional convergence <> Absolute convergence (14)

Unconditional convergence for a series ) - u, means
convergence “independent of the order” i.e. that ) ¢ ty(n)
converges whatever o € Gy.

Absolute convergence is wrt the continuous seminorms of the space.
Time is ripe now to speak of the standard topology of H().
For K € £(f2), we introduce the seminorm (norm if Q is connected

and K° # ()

Ifllk = sup [f(2)|
zeK
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Initial topologies.

@ We now use a very very general construction, well suited both for
series and holomorphic functions (and many other situations), that of
initial topologies (see [33] and, for a detailed construction [6], Chl

§2.3)
resk

% (K;; C)

resy,og

X =———— H(Q) ———— F(K;;C)
% (K;; C)

@ So H(Q) is a locally convex TVS whose topology is defined by the

family of seminorms (|| ||x)ker(q)-
18748



Topology of H(£2) cont'd.

@ In fact, every Q C C is o-compact, this means that one can construct
a sequence (Kj,)n>1 of compacts i.e. (VK € R(2))(3n > 1)(K C K,)
therefore 7(€2) is a complete (hence closed) subset of the product
Mp>1C(Kn; C) (for the topology on the cube, see a next CCRT).

1
Kn={z€ Q| d(z,z0) <nand d(z,C\ Q) > ;}

)

(D

@ We will see more (step-by-step and starting from scratch) on the
topology of the cube and separability in the CCRT devoted to

convergence questions).
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Properties of H(£2) and domain of Li.

@ If Q# 0, H(Q) is not normable because, there are two continuous
operators

al - f—2zf: a: fr—>if
dz

such that [a,a] = Idy;q) (Hint Compute ad,(et).
@ H(RQ) has property (14) (nuclearity).
@ This leads us to the following

Let T € H(Q)(X)), we define (with [S]y == 3,1_,(S | w)w)

Dom(T) ={S € C{(X)) | Z (T | [S]n) cv inconditionally} (15)
n>0

If S € Dom(T), we set (T [S):=3_ 5o(T | [S]n).
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Shuffle properties and domain of Li.

@ In the case when T is a shuffle character, we have

Theorem (GD, Quoc Huan Ngd, HNM [14] for Li)
Let T € H(Q)({(X)) such that

(T|: P—={(T|P)(C(X)—H(Q) (16)

is a shuffle character. then

i) Dom(T) is a shuffle subalgebra of (C{(X)), ., 1x+).

i) (T | S1wSy) =(T | S1)(T|S2) i,e. S— (T |S) is a shuffle character
of (Dom(T),ws, 1x«) that we will still denote (T | .

iii) Then Im((T | ) is a (unital) subalgebra of H ().

iv) In particular (see infra for an algebraic proof), z = Li(xg) and then,
C[z] C Im(Dom(Li)).
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Open problems and some solved.

1¢]

® 6 6 6

®

Do we have H(Q) = Im(Dom(Li)) (= Im(Li)) ? (in other words does
it exist inaccessible f € H(Q) ?)

If o ¢ Q, does 1/(z — z) belong to Im(Li) ? (z0 € Q and z ¢ Q)
(Solved) Are there non-rational series in Dom(Li) ? (answer yes)
(Solved) Is C™t((X)) contained in Dom(Li) (answer no)

What is the topological complexity of Dom(Li) in the Borel
hierarchy (Addison notations, see [24] for details and use the
convenient framework of polish spaces [7], ch IX).

Borel hierarchy: We recall that this hierarchy is indexed by ordinals
and defined as follows

O Asetisin X9 if and only if it is open.

@ A setisin MO if and only if its complement is in X9.

@ Aset Aisin X2 for a > 1 if and only if there is a sequence of sets

A1, Ao, ... such that each A; is in I'Igl_ for some a; < awand A= JA;.
@ Asetisin A if and only if it is both in £% and in N2.
22748



Open problems and some solved /2
@ From slide (11), one can remark that the iterated integrals are based on two
integrators, informally defined as

n(f) = /O f(s)lcfS ! el = / f@)% with 2 € (0,1} (17)

t1 is defined and continous on H(2) and g is defined on spanc{Liy }wex-?
(context-dependent) and not continuous [14] on this set (see below).
Problem What is the Baire class of ¢q ?

@ Recall that £(2) admits a cofinal sequence (K,)nen of compacts i.e.
(VK € R(Q))(3n € N)(K C K,) therefore H () is a complete (hence
closed) subset of the product M,cnC(Ky; C) .

@ Recall that (see [14] and slide SI.18)

1
Kh={z€Q|d(z,z0) <nand d(z,C\ Q) > -

}.

?It can be a little bit extended, see our paper [14].
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Properties of the extended Li.

Proposition
With this definition, we have
© Dom(Li) is a shuffle subalgebra of C{(X)) and so is
Dom"™*(Li) := Dom(Li) N Cr*({(X))
@ For S, T € Dom(Li), we have
Lis,, 7 = Lis.Lit

Examples and counterexamples

For |t| < 1, one has (txo)*x1 € Dom(Li, D) (D being the open unit slit
disc and Dom(Li, D) defined similarly), whereas x3x; ¢ Dom(Li, D).
Indeed, we have to examine the convergence of > -, Lixx (2), but, for
z €]0,1[, one has 0 < z < Lixx, (z) € R and therefore, for these values
Y n>0 Lixpx (2) = +00. Contrariwise one can show that, for [t <1,

n

Li(txo)*xl(z) = ZnZl nit
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Passing to harmonic sums H,,, w € Y*.

Polylogarithms having a removable singularity at zero

The following proposition helps us characterize their indices.

Proposition
Let f(z) = (Li| P) =", cx-(P | w) Li,. The following conditions are
equivalent

i) f can be analytically extended around zero

i) PeC(X)x; ®&C.1x~

A,

We recall the expansion (for w € X*x; U {1x+}, |z| < 1)

Liy(z
l—z

=> Hryw(N) 2" (18)

N>0

A,
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Global and local domains.

This proposition and the lemma lead us to the following definitions.

© Global domairLs.—
Let ) # Q C B (with B =C\ {0,1}), we define Domq(Li) C C{X)) to be
the set of series S =3 - Sy (with S, =37, _,(S | w) w each
homogeneous component) such that ) _ Lis, is unconditionally
convergent for the compact convergence (UCC) [26].

As examples, we have Qy, the doubly cleft plane then
Dom(Li) := Domg, (Li) or Q2 = B

@ Local domains around zero (fit with H-theory).—
Here, we consider series S € (C{(X)x1 @ Clx-) (i.e. supp(S) N Xxo = 0).
We consider radii 0 < R < 1, the corresponding open discs
Dgr = {z € C| |z| < R} and define

DomR(Li) = {5 = ano Sn S ((C<<X>>X1 D (C].Q)| Z L"S,, (UCC) in DR}

Dom/oc(Li) ‘= Up<r<1 DOmR(Ll)
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Local domains.

@ Local domains: the domain of convergence of Li,,, w € X*x; is

C\ (] — 00, —1] U [1,400[) and these functions are Taylor expandable
around zero. With S =3" -, S, € C((X)), we study the inconditional

convergence of > - Lis,(z) within different open disks
(B(O,O)(r))0<r<1 y
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Properties of the domains.

Q Forall ) # Q C B, Domg(Li) is a shuffle subalgebra of C((X)) and so
are the Dompg(Li).

@ R+ Domg(Li) is strictly decreasing for R €]0, 1].

@ All Domg(Li) and Domy,c(Li) are shuffle subalgebras of C{(X)) and
Ty (Domyoc(Li)) is a stuffle subalgebra of C({(Y)).

© Conversely, let T(z) =)y anz" be a Taylor series i.e. such that

lim supy_, 1o |an|/V = B < +00, then the series
S= Za,\, x) )N (19)

is summable in C{(X)) (with sum in C{(x1))) and S € Domg(Li) with
R = gi1 and Lis = T(z2).
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Theorem A/2

© Let S € Domg(Li) and S =3 -y Sn (homogeneous decomposition),
we define? N — H . (s)(N) by

Llis_(zz) =) Hys(M)z" . (20)

N>0

Moreover, for all r €]0, R[, we have

> Huy syl < +oo, (21)
nN>0

in particular, for all N € N the series (of complex numbers)
> n>0 Hry(s,) (V) converges absolutely to Hy, (s)(N).

“This definition is compatible with the old one when S is a polynomial.
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Theorem A/3

@ Conversely, let @ € C{(Y)) with Q =", -, Qn (decomposition by
weights), we suppose that it exists r €]0, 1] such that

> [He, (M) < +o0 (22)
n,N>0

in particular, for all N € N, > - Hgq,(N) =¢(N) e C
unconditionally.
Under such circumstances, mx(Q) € Dom,(Li) and, for all |z| < r

Lls Z) =Y n)2", (23)

N>0

v
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Insightful fathers.

Figure: Jacques Hadamard and Paul Montel.
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Local domains: morphism properties.

Corollary (of Theorem A)

Let S, T € Dom'¢(Li), then

Sw T € Dom (Li), mx(my(S) wmy(T)) € Dom"(Li)
and for all N > 0,

Lisu_, T = Lis LiT' Lilx* = ?—L(Q)a (24)

Hry(s)ywmy (1) (N) = Hey(s)(N)Hz, () (N). (25)
Lis(z) Lir(z) _ Lingry(s)wn(m)(2)

l—z®1—z - 1—z ' (26))
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Continuing the ladder

(C(X), w,1xx) ——2* % C{Liy }wex-

[ o 1

(C(X), w0, 1x) 5 (—x0)*s ] —= Co{Lin}twex-

[ . 1

C(X) w C™*{(x)) w C**((x1)) ——=— Cc{Liw }wex-

C(X) ®c C™* ((x0)) ®c C™**((x1))

We have, after a theorem by Leopold Kronecker,

Ccrat () = { g } P,QeClx]

Q(0)0
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On the right: freeness without monodromy.

Theorem (Deneufchatel, GHED,Minh & Solomon, 2011 [12])

Let (A, D) be a k-commutative associative differential algebra with unit and C be
a differential subfield of A (i.e. 9(C) C C). We suppose that k = ker(0) and that
S € A(X)) is a solution of the differential equation

d(S)=MS; (S|1)=1with M= ux € C{X) (28)

xeX

(i.e. M is a homogeneous series of degree 1)
The following conditions are equivalent :

© The family ((S | w))wex~ of coefficients of S is (linearly) free over C.

@ The family of coefficients ((S | X))xexu{ix-} is (linearly) free over C.
© The family (ux)xex is such that, for f € C et ax € k

Zaxux (Vx € X)(ax =0).

xeX
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A useful property.

[mathoversflow I T I

Independence of characters with respect to polynomials

| came across the following property :

5 Let g be a Lie algebra over a ring k without zero divisors,
U = U(g) be its enveloping algebra. As such, U is a Hopf algebra and e, its counit, is the only
character of i — k which vanishes on g.

SetU. = ker(e). We build the following filtrations (N > 1)

1 Uy =ud¥=u

N times
and
Uy =Uy = {f €U |(Vu e Uni)(FW) = 0)}  (2)

the first one is decreasing and the second one increasing. One shows easily that (with © as the
convolution product)

. olf* -

Uy oUy CUy.,

so thatU3, = Un>1U,, is a convolution subalgebra of *.

Now, we can state the

Theorem : The set of characters of (U, . , 13/) is linearly free w.r.t. 2, .

asked 1 month ago
viewed 106 times

FEATURED ON META

Revisiting the *Hot Network Questions’
feature, what are our shared goals for

Who cut the cheese?

Responsive design released for all Beta &
Undesigned sites

Related

What does the generating function
2/(1 - e*) count?

Is there a canonical Hop structure on the
center of a universal enveloping algebra?

BB 0o swunted exponential series give projections
of a cocommutative biaigebra on ts coradical
fitzation?

BB ovarom groups... notvia peseniatons

3 How a unitary corepresentation of a Hopf C*-
algebra, deals with the antipode?

14 Rialoehras with Honf rectricted (or Sweedlen
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Left and then right: the arrow Liﬁl).

Proposition

i. The family {x§, x;'} is algebraically independent over (C(X), s, 1x+)
within (C{X )™, w, 1x+).

ii. (C(X),w, 1x«)[x5, X7, (—x0)*] is a free module over C(X), the family
{0) K w () "}k yezxn is a C(X)-basis of it.

iii. As a consequence, {w w(x¢)~ K w(x) '} wex+ isa C-basis of it.
(k,))EZXN

iv. Lil" is the unique morphism from (C(X), w, 1x«)[x3, (—x0)*, x{] to
H(K2) such that

=2z (—x0) =z tand xf — (1-2)7"

v. Im(LiY) = Cz{Liw }wex-.
vi. ker(Li") is the (shuffle) ideal generated by xi wu x} — X" + 1x-.
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Sketch of the proof (pictorial).

(w, =k, 1) (w, —k+1,1)|(w,k —1,1) (w, k, 1)
i

(w, —k, | — 1)
(o k — 1,1 — 1)

—k

»
>

Figure: Rewriting mod J of {w w (x¢)™ * w(54)™ "} kez ienwex--
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Concluding remarks.

© Extending the domain of polylogarithms to (some) rational series
permits the projection of rational identities. Such as

(ax)*'w(By)" = (ax + By)*

@ The theory developed here allows to pursue, for the Harmonic sums,
this investigation such as

(ayi)* w (By;)* = (ayi + By + aByiy)*

© We have, on the left, spaces equipped with Krull ultrametric
convergence and a nice setting on the (topological) Magnus and
Hausdorff groups. On the right, we have adapted domain theories
with identities between polylogarithms and harmonic sums.
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and a lot of (machine) computations.
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